Consider three vectors
\(\vec{a}=(2,4), \vec{b}=(2,8)\:\) and \(\:\vec{c}=(1,0)\)
on the \(xy\)-plane.
Two vectors \(\vec{p}\) and \(\vec{q}\) satisfy
\(\big(\vec{p}-\vec{a}\big)\cdot\big(\vec{p}-\vec{b}\big)=0\:\) and
\(\:\vec{q}=\dfrac{1}{2}\vec{a}+t\vec{c}\).
What is the minimum value of \(\big|\,\vec{p}-\vec{q}\,\big|\)?
[3 points]
- \(\dfrac{3}{2}\)
- \(2\)
- \(\dfrac{5}{2}\)
- \(3\)
- \(\dfrac{7}{2}\)