For a real number \(t\),
define a function \(f(x)\) as
\(f(x)=\begin{cases}
1-|x-t| & (|x-t|\leq1)\\\\
\qquad 0 & (|x-t|>1).
\end{cases}\)
For some odd number \(k\),
the function
\(g(t)=\displaystyle\int_k^{k+8}\!f(x)\cos(\pi x)dx\)
satisfies the following.
Let us list all \(\alpha\) for which
the function \(g(t)\) has a local minimum at \(t=\alpha\) and \(g(\alpha)<0\).
Let \(\alpha_1,\alpha_2,\cdots,\alpha_m\) (\(m\) is an integer)
be this list in ascending order.
Then \(\displaystyle\sum_{i=1}^m\alpha_i=45\).
Compute \(k-\pi^2\displaystyle\sum_{i=1}^mg(\alpha_i)\).
[4 points]